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Abstract

Motivation

Genotyping of bi-parental populations can be performed with low-coverage next-generation

sequencing (LC-NGS). This allows the creation of highly saturated genetic maps at reason-

able cost, precisely localized recombination breakpoints (i.e., the crossovers), and mini-

mized mapping intervals for quantitative-trait locus analysis. The main issues with these

low-coverage genotyping methods are (1) poor performance at heterozygous loci, (2) high

percentage of missing data, (3) local errors due to erroneous mapping of sequencing reads

and reference genome mistakes, and (4) global, technical errors inherent to NGS itself.

Recent methods like Tassel-FSFHap or LB-Impute are excellent at addressing issues 1 and

2, but nonetheless perform poorly when issues 3 and 4 are persistent in a dataset (i.e.,

“noisy” data). Here, we present a new algorithm for imputation of LC-NGS data that elimi-

nates the need of complex pre-filtering of noisy data, accurately types heterozygous chro-

mosomal regions, precisely estimates crossover positions, corrects erroneous data, and

imputes missing data. The imputation of genotypes and recombination breakpoints is based

on maximum-likelihood estimation. We compare its performance with Tassel-FSFHap and

LB-Impute using simulated data and two real datasets. NOISYmputer is consistently more

efficient than the two other software tested and reaches average breakpoint precision of

99.9% and average recall of 99.6% on illumina simulated dataset. NOISYmputer consis-

tently provides precise map size estimations when applied to real datasets while alternative

tools may exhibit errors ranging from 3 to 1845 times the real size of the chromosomes in

centimorgans. Furthermore, the algorithm is not only highly effective in terms of precision

and recall but is also particularly economical in its use of RAM and computation time, being

much faster than Hidden Markov Model methods.
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Availability

NOISYmputer and its source code are available as a multiplatform (Linux, macOS, Win-

dows) Java executable at the URL https://gitlab.cirad.fr/noisymputer/noisymputerstandalon

e/-/tree/1.0.0-RELEASE?reftype=tags.

Introduction

In genetic studies, bi-parental genetic populations can be created from inbred parental lines

using various crossing systems, e.g., F2 intercross issued from F1 self-pollination (F2) and

recombinant inbred lines by single seed descent (SSD). These populations are used to create

recombination maps and, if phenotypes are available, to find gene or quantitative-trait locus

(QTL) genomic positions.

To do so, each individual of the population under study has to be characterized for its geno-

mic content—or “genotyped” at many loci. This can be done using different molecular biology

techniques, including various types of molecular markers. The gold standard for genetic vari-

ant discovery is obtained by different next-generation sequencing (NGS) techniques like

restriction site-associated DNA sequencing (RADseq) [1], genotyping by sequencing (GBS)

[2], and whole-genome sequencing (WGS) [3]. These techniques provide very large numbers

of markers and therefore facilitate the construction of highly saturated genetic maps. This pro-

vides accurate locations of recombination breakpoints in each individual, which is important

for a number of applications, e.g., studies of local recombination rate, genetic maps compari-

son, or QTL detection. Though NGS is less and less expensive to implement, sequencing a

large number of samples can still be costly, and is commonly applied via reduced representa-

tion (RRS-NGS) or low-coverage (LC-NGS) strategies to reduce genotyping costs.

Reducing sequencing costs through minimized per-sample coverage has an important

experimental downside: LC-NGS mechanically introduces a series of issues, the main ones

being:

• Issue 1: Low power to detect heterozygosity under low coverage: For example, if only one

sequencing read is generated at a locus, only one of the two alleles is revealed. As each addi-

tional read has a 0.5 probability of detecting the second allele, even 3 reads have only 0.75

probability of detecting a heterozygous call. Spread over thousands of sites, extensive inaccu-

racy in heterozygous regions becomes highly problematic.

• Issue 2: Extensive genotype missingness: The sparse distribution of reads at low coverage (3X

coverage, for example, only implies an average of 3 reads per site) results in a complete lack

of reads at some variant loci. Even in plants, which contain more genetic variation than

humans, there are 6–22 SNPs per 1 Kb, resulting in abundant opportunity for non-reference

variant missingness under low coverage [4].

And these issues are further compounded by those common to all types of NGS:

• Issue 3: Errors due to erroneous mapping of sequencing reads: NGS technologies are based on

short reads (e.g., 150 base pair, paired-end Illumina technology). Due to the combinatorial

limitation of the sequence contained in short reads, multiple mapping locations may be

identified, especially in plant genomes which exhibit much more repetitive content than

human genomes. Additionally, in plants, such as rice, structural variation specific to subpop-

ulations may be completely missing in single reference genomes. These assembly errors,
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omissions, and challenges posed by repetitious regions are sources of erroneous variants.

Moreover, outright assembly errors may cause consistent, yet locally encountered genotyp-

ing errors.

• Issue 4: Technical errors inherent to NGS methodology: Sequencing errors may be globally

introduced at a variety of stages in the NGS pipeline, from errors incurred in PCR-depen-

dent library construction to NGS sequencing itself. The initial GBS protocol is known to

generate libraries contaminated by chimeric inserts [5]. Although rare, these errors may

become problematic at low coverage, as additional reads refuting an erroneous call may not

be available at a given locus.

Common imputation algorithms implemented in computer programs like Beagle [6, 7] or

Impute2 [8], although very accurate in diversity panels, are not well adapted to the bi-parental

context since they rely on large databases to infer haplotypes. Efficient methods have been

recently developed to impute genotypic data derived from LC-NGS assays in bi-parental popu-

lations. For instance, Tassel-FSFHap (thereafter simply FSFHap) [9] and LB-Impute [10] can

all address issues 1 and 2 accurately. Yet, these methods can produce inaccurate results when

the errors mentioned in issues 3 and 4—thereafter called “noisy data”—are too frequent. Thus,

these methods might require additional bioinformatic steps to filter out low-quality markers

before and after imputation. Even then, troublesome markers might not be detected easily and

could alter dramatically the quality of the imputation and the final genetic map.

In this work, we present NOISYmputer, a maximum likelihood estimation algorithm for

imputation of LC-NGS data that eliminates the need of complex pre-filtering of noisy data,

accurately finds heterozygous chromosomal regions, corrects erroneous data, imputes missing

data and precisely locates the recombination breakpoints (i.e., the meiotic crossovers). We test

its accuracy using simulated data and we compare its performance with FSFHap, LB-Impute

using three datasets: (1) a rice F2 population sequenced by WGS, (2) a maize F2 population

sequenced by GBS and (3) 84 simulated F2 populations with controlled depth, error rate and

marker density. The algorithm is implemented in NOISYmputer, a multiplatform Java com-

mand line program (see “Availability” section).

Design and implementation

Imputation method

In this section we describe the main imputation algorithm, which is applied separately to each

chromosome. The imputation can be preceded or followed by different filtering options in

NOISYmputer (details in next section) that can be applied to reduce or eliminate the noise in

the data (Fig 1).

By imputation, we mean here guessing, confirming or correcting the genotype at a SNP site

in a sample. LC-NGS generates poor information in heterozygous regions (see explanation on

the confounding effect in SNPs with one or few reads—issue 1 of the Introduction section).

Conversely, homozygous regions are much less prone to these confounding effects. Yet, miss-

ing data (issue 2), noisiness (issue 3) and sequencing errors (issue 4) can lower the power to

identify homozygous diplotypes (i.e., the combination of two gametic haplotypes). The general

idea of the algorithm is, as in Hidden Markov Model (HMM), to use information of various

SNPs around the imputed SNP, leaving the regions surrounding the recombination break-

points unimputed lying between the two diplotypes. The locations of the recombination break-

points are then inferred. Furthermore, instead of modeling error rates, we take an iterative

approach to estimate them (Fig 1).
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Fig 1. NOISYmputer’s workflow. It is composed of three major phases: pre-imputation, imputation and post-imputation.

Some steps are optional (dashed borders) while others are required for the algorithm to complete.

https://doi.org/10.1371/journal.pone.0314759.g001
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Imputation—Step 1: Genotype calling. Let’s consider a chromosome of an F2 individual

with one single recombination breakpoint that separates a homozygous diplotype (AA; BB)

from a heterozygous diplotype (AB, or BA, equivalent thereafter). Let’s also consider a set of

SNPs evenly dispersed on the physical genome, say, every 500 base pairs (bp). In the AA diplo-

type, and far from the breakpoint location, all SNPs should be genotyped as AA, except from

the different kinds of errors cited above. To determine the genotype of a particular SNP, and

due to these errors, one must consider not only its score in the VCF, but also its immediate

“environment”, that is, the SNPs that are located just before and just after it along the chromo-

some. Those surrounding SNPs help identify a potential error in the SNP scoring. Different

approaches can be taken to look at the SNP environment. In segregating populations, the vast

majority of the genome is exempt from crossing overs. Indeed, when implementing a sliding

window method like described hereby, the expected proportion of the genome with no recom-

bination in the window is PnoXO ’ 1 � 1

100N

� �
Dð8m � 2Þ, wherem is the number of SNPs in

the sliding window, N is the total number of SNPs, and D is the expected genome size in centi-

morgans (cM) (S2 File). Hence, in almost the entire genome except the breakpoint regions

there are only two or three possible diplotypes, depending on the population type. Thus,

instead of calculating all the likelihoods of possible paths (like in Hidden Markov Model meth-

ods), the problem is reduced to calculate the likelihoods of the data for the three possible diplo-

types. Furthermore, there is no need to include transition (i.e., recombination) probabilities.

The main advantage of this approach is its computation time, which increases linearly accord-

ing to the diplotype size, in O(T), since the log-likelihood of a diplotype is simply the sum of

individual values for each site, while the time complexity is O(T × S2) for the Viterbi algorithm

applied to resolve fully connected Hidden Markov Model processes, with T being the length of

the sequence of observations and S being the number of hidden states. We now describe the

algorithm with the example of an F2 population.

In practice, one defines starting values for error rates for reads A (eA) and B (eB), being

respectively the probabilities of observing a B read (OB) whereas the genotype is truly AA and

observing an A read (OA) whereas the genotype is truly a BB

eA ¼ pðOBjAAÞ eB ¼ pðOAjBBÞ

We allow different error rates for A and B reads since the A and B parents are generally not

equally (i.e., genetically) distant from the reference genome. For example, one could set eA =

0.005 and eB = 0.003 if Parent B is closer genetically to the Reference genome than Parent A is.

Those values will be automatically refined after one or several rounds of imputation.

Thus, at homozygous sites, the probability of observing an A read if the true genotype is AA

is

pðOAjAAÞ ¼ 1 � eA

and the probability of observing a B read if the true genotype is BB is

pðOBjBBÞ ¼ 1 � eB

At heterozygous (AB) sites, and assuming that the A and B reads have the same chance to

occur, the probabilities of observing A and B reads are

pðOAjABÞ ¼
1

2
pðOAjAAÞ þ

1

2
pðOAjBBÞ ¼

1

2
ð1 � eAÞ þ

1

2
eB

pðOBjABÞ ¼
1

2
pðOBjBBÞ þ

1

2
pðOBjAAÞ ¼

1

2
ð1 � eBÞ þ

1

2
eA
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Let’s consider a chromosome with n SNPs. For each site SNPj of the chromosome, we define a

symmetrical window (Wj) containing the SNPj at its center,m SNPs before it in the sequence

andm SNPs after it (with read count>0). SNPs that are located in chromosome ends are omit-

ted, since it is not possible to define symmetrical windows around them. This case is discussed

later on.

For each site SNPi of theWj window three situations are possible: i) the genotype Gi of the

SNPi is AA (homozygous for parent A allele), ii) the genotype Gi is BB (homozygous for parent

B allele) or iii) the genotype Gi is AB (heterozygous).

We then estimate the likelihood of observing a given combination of A reads (nAi) and B

reads (nBi) at site SNPi, given that the total number of reads (ni) at this site is equal to nAi + nBi.
To do so, we use the binomial distribution, with sample size at SNPi equal to ni, the number of

successes equal to nAi, and thus of fails equal to nBi. Knowing already the probability of observ-

ing A reads under the three possible genotypes (AA, BB and AB) we obtain the following:

P½nAijpðOAjAAÞ� ¼
ni
nAi

� �

pðOAjAAÞ
nAið1 � pðOAjAAÞÞ

ni � nAi

¼
ni
nAi

� �

pðOAjAAÞ
nAipðOBjAAÞ

nBi

P½nAijpðOAjBBÞ� ¼
ni
nAi

� �

pðOAjBBÞ
nAið1 � pðOAjBBÞÞ

ni � nAi

¼
ni
nAi

� �

pðOAjBBÞ
nAipðOBjBBÞ

nBi

P½nAijpðOAjABÞ� ¼
ni
nAi

� �

pðOAjABÞ
nAið1 � pðOAjABÞÞ

ni� nAi

¼
ni
nAi

� �

pðOAjABÞ
nAipðOBjABÞ

nBi

Since the binomial factor is the same for the three possible genotypes, it can be omitted in the

calculations. Then, individual relative probabilities that the genotype Gi of the SNPi is AA, BB

or AB are defined as:

pðGi ¼ XÞ ¼
P½nAijpðOAjXÞ�P

X
P½nAijpðOAjXÞ�

; with X ¼ AA;BB;AB

The probabilities for the window’s diplotype around the SNPj to be AA, BB or AB are obtained

by multiplying the individual probabilities of all the SNPs in the window. As multiplication of

probabilities can result in very small numbers, we add their logarithms instead to avoid reach-

ing the precision limit of the computer:

rX ¼
XSNPjþm

i¼SNPj� m

log½pðGi ¼ XÞ�; with X ¼ AA;BB;AB

Finally, the relative probabilities for the window’sWj around the SNPj to be AA, BB or AB are
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defined as:

PðWj ¼ AAÞ ¼
expðrAAÞ

expðrAAÞ þ expðrBBÞ þ expðrABÞ

PðWj ¼ BBÞ ¼
expðrBBÞ

expðrAAÞ þ expðrBBÞ þ expðrABÞ

PðWj ¼ ABÞ ¼
expðrABÞ

expðrAAÞ þ expðrBBÞ þ expðrABÞ

A genotype is assigned to the SNP j if the relative probability of its surrounding window is

superior to a given threshold α. To guarantee that no SNP is falsely genotyped, the threshold is

set to a very stringent value (0.999 by default). SNPs with P(Wj)< α for all genotypes are

assigned a missing data value. We repeat the process for each SNPj of the chromosome. For

chromosome ends, the procedure is similar except that the half-window on the end side is

smaller due to the lack of sites available to the left or right of SNPj. This leaves two types of

chromosomal regions unimputed and filled with missing data: 1) regions between imputed

chromosome segments with identical diplotypes and for which none of the criteria are

matched to assign a genotype, and 2) regions near recombination breakpoints.

Imputation—Step 2: Gap filling and error rate estimation. Step 2 consists in i) filling

the unimputed regions with the surrounding genotype, with the condition that they are sur-

rounded (left and right) by identical imputed genotypes, then ii) re-estimating error rates. The

filling procedure assumes that a double recombination event is very unlikely. The maximum

region size that is allowed for data filling can be calculated using the local recombination rate,

which is calculated from the data of the entire F2 population, imputed from Step 1. So, regions

larger than the maximum size are left unimputed. It is desirable to use an interference model

to estimate the distances (in cM), for instance the one implemented in the Kosambi mapping

function [11]. The method employed in NOISYmputer to estimate recombination fractions in

F2 populations is the standard Expectation-Maximization algorithm [12].

Let’s take the example of two SNPs A and C that define the bounds of such a region. They

are separated by the genetic distance d (cM). The maximum probability of a double crossover

can be calculated as follows. We first search for the SNP B that is the closest to the middle

point between A and C (in cM). Then, we calculate the recombination fractions rAB and rBC
from dAB and dBC using the inverse of the Kosambi mapping function

r ¼
1

2
tanh

2d
100

� �

Note that r � d
100

when d< 15 cM. In the case of highly saturated maps, this formula can be

used in most intervals. Then the maximum probability of the missing data to be different to

the surrounding genotype is

rABC ¼ rABrBC þ rAB
2rBC

2 � rABrBC if SNPs A and C are homozygous

rABC ¼ rABrBC þ rAB
2rBC

2 � 2rABrBC if SNPs A and C are heterozygous

The regions for which rABC� α are filled with the surrounding genotype; α is set to 0.001

by default. This step leaves the breakpoint regions unimputed.
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We can then estimate new values for eA and eB by comparing the observed data with the

newly imputed regions. This is done by simply counting the proportion of A reads in BB-

imputed segments, and the proportion of B reads in AA-imputed segments.

Imputation—Step 3: Locating recombination breakpoints. Step 3 consists in imputing

the SNP genotypes in the regions near the recombination breakpoints—i.e., between diplo-

types of different states. The general idea is to determine an interval of high probability of pres-

ence (loose support interval) of the breakpoint, then to calculate the likelihood of the data

under the hypothesis of a recombined segment. This procedure allows determining with high

confidence a loose support interval where the recombination breakpoint is located. Here we

take the example of a segment BB to the left of the breakpoint and a segment AB to the right.

Since we already know from Step 1 which are the two genotypes at the left and the right of the

breakpoint, we only need to consider the only two possible diplotypes, BB and AB. This saves

one degree of freedom. If k defines the closest SNP position to the point where p(Wj = BB) = p
(Wj = AB) in Step 1, we take k − 2m and k + 2m as starting points to guarantee that the break-

point is covered by the interval. Then, for each SNPj of the scanned area, we recalculate p(Wj =

BB) and p(Wj = AB), but this time in asymmetric windows of sizem, that is, for BB, we define

a window from SNPj to SNPj−m and for AB a window from SNPj+m to SNPj. And then, follow-

ing calculations similar to Step 1 but omitting the probabilities for the AA genotype:

pðWj ¼ BBÞ ¼
expðrBBÞ

expðrBBÞ þ expðrABÞ
in the B window

pðWj ¼ ABÞ ¼
expðrABÞ

expðrBBÞ þ expðrABÞ
in the H window

Starting from k − 2m, and progressing to the right, we look for the first site SNPj for which:

PSI ¼ ð1 � pðWj ¼ BBÞÞðð1 � pðWj ¼ ABÞÞ > aSI

with SI = 0.05 by default.

The explanation for the calculation of PSI is provided in S3 File.

The breakpoint loose support interval is defined between the first position from the left (kL)
and from right (kR) where PSI> SI. The breakpoint support interval and position are then esti-

mated within the loose support interval. To do so, for each SNPj in the breakpoint interval kL
to kR, a probability Pbkp that the diplotype’s window contains a breakpoint in its middle is esti-

mated. We define a left window for pbkp(Wj = BB) that includes the SNPj and goes to the left

until the window’s data count reachesm/2 SNPs with at least one read (the left boundary of

this window is calledmL) and a right window for pbkp(Wj = AB) that starts at SNPj+1 and goes

to the right until the window’s data count reachesm/2 SNPs with at least one read (the right

boundary of this window is calledmR). Values ofmL andmR are recalculated for each SNPj.
The log-probabilities for the left and right segments are:

rbkpðWj ¼ BBÞ ¼
Xj

i¼mL

log½pðGi ¼ BBÞ�

rbkpðWj ¼ ABÞ ¼
XmR

i¼jþ1

log½pðGi ¼ ABÞ�
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Then, the probability that the SNPj and SNPj+1 are surrounding the breakpoint is:

pbkpðBKjÞ ¼ expðrbkpðWj ¼ BBÞ þ rbkpðWj ¼ ABÞ

And after normalization:

PbkpðBKjÞ ¼
pbkpðBKjÞ

maxðpbkpðBKzÞ : z ¼ kL; . . . ; kR

The breakpoint is estimated in the middle of the interval defined by the SNP having the maxi-

mal Pbkp(BKj) and the next SNP to its right.

Finally, the unimputed genotypes in the breakpoint area are completed in assigning the BB

genotype to the SNPs to the left of the SNP with the max Pbkp(BKj) (included) and AB to the

right. Imputation of breakpoint positions for the other types of homozygous-heterozygous

transitions (AB!BB, AA!AB, AB!AA) are easily derived from the example beforehand.

The support interval for the breakpoint around its most likely position can be defined in

searching for the SNPs (left and right starting from the SNP with the maximum Pbkp(BKj) for

which −log10(Pbkp(BKj)� αdrop, where αdrop is the dropping value of Pbkp. αdrop is set to 1 by

default, corresponding to ten-fold decrease of Pbkp compared with Pbkp(BKj).

Filtering options—Before imputation

Genotypic frequencies, heterozygosity, missing data. The program can filter out SNPs

for parental genotypes, and progeny heterozygosity, percentage of missing data and parental

genotypic frequencies. Min and max filtering values can be manually entered (though usually

not recommended), or the program can calculate them from the genotype matrix imported

from the VCF. In this case, genotypic frequencies are calculated for each SNP, and the filter

values are derived from the extreme percentiles of the frequency distribution. Correction fac-

tors can be applied to the percentiles, to avoid too small or too large values.

Read counts. SNPs with too few or too many reads can be eliminated. This can be useful

to, for instance, remove SNPs in duplicated regions. By default, when reading the input VCF

file, if the depth of a site for a sample is at least 10 times superior to the average depth of this

same sample (across all sites), the genotype at this site is set to a missing data. Also by default,

no filter is applied on the minimum number of reads required to consider a site in a sample.

Incoherent SNPs. In sequence-based genetic mapping, it is common to observe SNPs

that do not segregate the same way as their immediate environment, indicating a probable

mapping error due to, for instance, structural variation between the reference genome and the

population parents, or between the parents, or both. As segregation distortion is a frequent

phenomenon in many organisms, the Mendelian expected frequencies cannot be used to ana-

lyze the SNP segregation. Instead, the procedure defines a window of n SNPs around each

tested locus. By default, n = 1% the number of SNPs in the largest chromosome. For each win-

dow/SNP couple, it calculates the genotypes AA, BB and AB frequencies and the reads A and B

frequencies across the population from the genotypes called in the VCF and compares the

SNP with the window segregation of genotypes and reads using a chi-square test, where

expected counts are the observed frequencies in the window multiplied by the population size.

It then filters out SNPs for which the chi-square statistic exceeds a defined threshold for geno-

types or reads frequencies.
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Filtering options—After imputation

Incoherent chromosome segments (single individual). Even after imputation and the

different filtering operations, some few, improbable chromosome short diplotypes can still

remain in the imputed matrix—we call them “small chunks”. The procedure identifies each

small chunk composed of identical alleles, embedded in a homogeneous genomic environment

that has a different allele. The method resembles the one used in Imputation—Step2.

Consider two SNPs A and C that define the bounds of a region imputed as H and sur-

rounded by regions imputed as A or B. Search for the SNP B that is the closest to the middle

point between A and C (in cM). Also search for an SNP D before the SNP A so that dDA� dAB,

and an SNP E after the SNP C so that dCE� dBC.

Then, calculate the recombination fractions rDB and rBE from dDB and dBE using the inverse

of the Kosambi mapping function. Then the maximum probability of the “chunk” to be differ-

ent to the surrounding genotype is

rABC ¼ rDBrBE

The chunks for which rABC� α are restored with the surrounding genotype; is set to 0.001 by

default.

Incoherent chromosome segments (cross-population). Entire chromosome segments

can be misplaced due to different kinds of genomic structural variation such as translocation,

or duplication in one of the two parents that is not present in the reference genome. Such seg-

ments are called “aliens” in the program. If their size is too large, the chi-square procedure that

filters out the incoherent SNPs may fail to identify them since it is run before the imputation.

Alien segments are easily detected, as they produce severe map expansion. The procedure

searches for SNPs that mark rapid changes in the slope of the cumulated centimorgans of the

genetic map calculated from the imputed matrix. If a SNP marker is detected, the procedure

then searches for the next SNP that is closely linked (by default r< 0.01) to the SNP located

just before the slope change. It then eliminates all the SNPs that are in-between.

Running the program

Algorithm implementation

The program is implemented in Java, as a Spring Boot (v2.6.7) project. Spring Boot is an open-

source Java framework used to create standalone java applications. The executable .jar has

been built with JDK 8 using Maven (v3.9.6), an open-source build tool.

Paths to datafiles and working folders paths, as well as parameters for imputation and filter-

ing can be entered in a config file or directly in the command line. A “NOISYmputerResults”

folder is automatically created, where the program writes all the output files.

Data specifications

In this current version, NOISYmputer is built and extensively tested to perform on F2 inter-

cross data, that is, the progeny from F1 self-fertilization (F2). NOISYmputer can also be used

on recombinant inbred lines by single seed descent from the F2 (SSD).

Input data for NOISYmputer are standard Variant Call Format (VCF) files, with chromo-

some coordinates. Genotypes (GT field) and allele depths (AD field) must be present in the

VCFs. The data can be low coverage, that is, the sum of all sequences produced per sample is

equivalent to 1–3 times (1–3 X) the size of the reference genome used. Ideally, the VCF should

contain only bi-allelic single-nucleotide polymorphisms (SNPs), however NOISYmputer auto-

matically filters out the other types of sites. Small indels are not handled. Parental lines need to
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be included in the VCF file with the prefix “Parent” in their name. Compressed “.gz” VCFs are

accepted.

Results

NOISYmputer, FSFHap and LB-Impute were run on the IFB Core cluster (specs. available at

https://ifb-elixirfr.gitlab.io/cluster/doc/cluster-desc/ and in details in S1 File) with one allo-

cated node per job and 32GB to 64GB of RAM to make sure that the tested programs are fully

efficient.

Details on parameters used for the three imputation methods are provided in S1 File.

Using simulations for calibration

To test NOISYmputer’s efficiency in precision and recall of breakpoints estimation, we used

simulated F2 datasets generated using PopSimul (https://forge.ird.fr/diade/recombination_

landscape/popsimul). A set of 84 VCFs with n = 300 samples and varying values of marker

density, mean depth and error rate were generated for a final expected map size of 180 cM

(corresponding to an average of 3.6 breakpoints per sample) to mimic the chromosome 1 of

rice (available at https://zenodo.org/records/13381283). Using five different imputation win-

dow sizes, we compared the outputs of NOISYmputer to the known positions of breakpoints

in the simulated data. In total, a set of 420 combinations were analyzed. All combinations and

tested parameters are listed in Table 1. The results of these analyses confirmed that NOISYm-

puter efficiently detects the recombination breakpoints and precisely estimates their positions.

Breakpoint precision-recall. We assessed NOISYmputer’s ability to correctly detect all

breakpoints within samples by comparing positions of breakpoints found by NOISYmputer to

those of simulated datasets. We considered a breakpoint correct when the simulated break-

point position falls within NOISYmputer’s loose support interval, along with the correct tran-

sition type.

Across all 420 VCFs, representing an average of 455,000 breakpoints, NOISYmputer dem-

onstrated robust recall score, correctly finding 99.5% of simulated breakpoints (median at

99.6%). NOISYmputer also displayed high precision as, on average, 98.9% of breakpoints iden-

tified correspond to actual breakpoints (with a median at 100%). Thus, NOISYmputer presents

an overall excellent precision and recall in detecting breakpoints.

To better understand the impact of each parameter and their interaction on NOISYmputer

performance, we performed a principal component analysis (PCA) on parameters and perfor-

mance indicators. Precision was primarily influenced by error rates, but was also affected by

the imputation window size when excessively large. Conversely, smaller window sizes

enhanced recall. Also, higher marker density correlated with improved recall, as lower

Table 1. Parameter values used in PopSimul to generate simulated F2 VCFs: Marker density, mean depth and error rate. All possible combinations of these parameters

were tested and imputed using a range of imputation windows in NOISYmputer.

Parameters Marker density (in number of markers along the chromosome) Mean depth (in X) Error rate NOISYmputer impute half window size

Tested values 220,000 0.5 0.05 15

180,000 1 0.01 20

100,000 1.5 0.005 30

66,000 2 50

2.5 100

3

4

https://doi.org/10.1371/journal.pone.0314759.t001
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densities limit NOISYmputer’s ability to identify breakpoints in regions with high recombina-

tion rates.

Some specific combinations decreased NOISYmputer precision and/or recall but overall

the lower performances were still good. For instance, the lowest precision was of 72.3% (with

error rates at 0.05 and smaller imputation window size of 15), and the lowest recall was of

96.9% (with larger imputation window size of 100). This is expected as small windows with

high levels of noise are prone to false positive breakpoints. Nevertheless, when setting the win-

dow size to a larger value—30 –, NOISYmputer achieves excellent results even with error rates

as high as 5%. As such, the minimum precision is 96% and the recall is 99%, regardless of

marker density or depth, even with reads with 5% error rate (S1 Table). On the other hand,

large windows (especially if coupled with low depth or marker density) may miss double

recombination events, leading to false negatives (Fig 2A and 2C). In more realistic conditions,

error rates as high as 0.05 are not typically observed in Illumina sequencing and alignments.

When removing runs with the 0.05 error rate, the average breakpoint precision reached 99.9%,

with a median of 100%. Similarly, the average recall was 99.6%, with a median of 99.5% (Fig

2B, S1 Fig).

The data in the VCF files, such as sequencing depth or marker density or species model,

depend on the model species or sequencing type and are generally not under the user’s control.

We thus looked for the imputation window size producing the best results for both breakpoint

Fig 2. Most impacting parameters and data characteristics on NOISYmputer results based on 420 outputs of simulated VCFs of F2 populations.

A) Representation of NOISYmputer’s precision (proportion of NOISYmputer-identified breakpoints being actual breakpoints from simulated data) in

function of NOISYmputer’s recall (proportion of simulated breakpoints correctly identified by NOISYmputer). NOISYmputer shows excellent recall

and precision with at least 72.3% and 96.9% respectively. B) Zoom on the upper part of the A plot of precision and recall, ignoring the error rate of 0.05.

C) PCA Biplot of NOISYmputer showing VCFs characteristics and imputation window size influencing precision and recall with simulated VCFs. The

lowest recalls are observed when high error rates are coupled with a small imputation half-window size in NOISYmputer. The lowest precisions

correspond to VCFs imputed with a large imputation half-window size in NOISYmputer and can be accentuated by very low depth (� 1X) and/or low

marker density (< 66, 000 sites /44 Mb).

https://doi.org/10.1371/journal.pone.0314759.g002
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precision and recall with the VCF that mimicked best the real F2 rice data we had. In both

cases, the optimal results were obtained by the imputation half window size of 30. Thus, we

used this value of 30 later on when exposing NOISYmputer to real datasets.

Precision of breakpoint position. NOISYmputer’s precision of breakpoint position was

estimated by computing the difference between the simulated breakpoints positions and the

estimated ones by NOISYmputer. We considered the size of the support interval and its

marker density to estimate discrepancy (in number of SNPs) with the actual breakpoint

position.

Across all 420 VCFs, a difference of 1,427 bp on average (equivalent to a discrepancy

of * 2 SNPs) was observed. The median difference was even lower, with only 245 bp (< 1

SNP discrepancy). This disparity between the median and mean is mainly due to extreme

combinations, particularly low depth combined with high error rate. Notably, variance is

higher in 0.5X coverage VCFs, becoming more homogeneous at 1X coverage.

Regarding the imputation window, smaller half-windows resulted in lower average differ-

ences between NOISYmputer and simulated positions but increased the median difference.

Consequently, smaller windows enhanced overall precision of breakpoint position while

potentially increasing the occurrence of extreme discrepancies.

Error rate estimations. Error rates (eA and eB), are recalculated after a first iteration of

imputation step 1. NOISYmputer correctly estimated the error rates in 100% of the cases, with

an average difference between simulated and estimated error rates of 9.8 10-7(standard devia-

tion 4.8 10-5) (S2 Table). This reflects the accuracy of the imputation, even with starting values

for error rates far from the true values.

Confirmed efficiency on real data and comparison with other methods

We assessed the performance of NOISYmputer on two real datasets: i) a maize F2 population

in GBS with 91 samples, including the parents, and ii) a rice F2 population with 3X coverage in

whole-genome sequencing (WGS) comprising 222 samples, including the parents sequenced

at * 30X. Details of how the real dataset for rice was generated are summarized in the S1 File

and the data are available at https://doi.org/10.23708/8FXUNC). The maize dataset is

described in the LB-Impute publication [10].

In real data, direct estimation of imputation accuracy may be challenging due to the

unknown true state at each locus. However, it is possible to assess the quality of the imputation

indirectly by comparing the final genetic map to, for instance, existing high-quality maps. A

correctly imputed dataset should yield a map size—in centimorgans (cM)—consistent with

those derived from high-quality marker data. Conversely, datasets with a high rate of genotyp-

ing errors will exhibit map expansion, resulting in a longer genetic map due to falsely imputed

recombination breakpoints.

Using map size estimates in centimorgans (cM) of chromosome 1 of these datasets, we

compared the results of NOISYmputer to those of LB-Impute and FSFhap (Fig 3 and Table 2).

Concerning the maize GBS dataset, LB-Impute and FSFhap strongly overestimated the map

size expected from high-quality datasets (respectively 633 cM and 13,271 cM), whereas NOI-

SYmputer’s map was in range with the expected map size (203 cM). Regarding the Rice WGS

dataset, while both LB-Impute and FSFhap yielded maps much larger than expected (23,436

cM and 337,750 cM respectively), NOISYmputer estimated a map size close to the expected

value (208 cM). The lack of prefiltering only partially explains the poor performance of LB-Im-

pute and FSFhap: even when providing a VCF prefiltered with NOISYmputer, they still pro-

duce extremely long maps (11,571cM and 47,319 cM respectively) (S3 Table). Also, results

from FSFhap on PopSimul data produced extremely large map size estimations for high error
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rates (5%) VCF (1,397,752 cM on average), whereas NOISYmputer estimates the map size to

be 180 cM compared to the 180 cM expected. Results were qualitatively similar between NOI-

SYmputer and FSFHap for lower (1% and .5%) error rates (S1 Table).

To further estimate the performance of NOISYmputer on real datasets we also performed

comparisons on precision, recall, and breakpoint position estimate in the F2 Rice population

Fig 3. Barplot of CPU time and RAM resource usage for NOISYmputer (orange), LB-Impute (gray) and FSFHap (blue) on three datasets.

Rice_WGS is an F2 Rice WGS dataset with n = 222 samples including parents; PopSimul_84 values are averages across 84 VCFs generated with

PopSimul, each VCF containing n = 300 samples including parents, simulated using ranges of depth, marker density and error rate to mimic different

characteristics of F2 VCFs; Maize_GBS is an F2 Maize GBS dataset with n = 91 samples including parents (with a lower marker density than

Rice_WGS). NOISYmputer is overly faster and more RAM-efficient in all conditions than FSFHap and LB-Impute, with the exception for RAM usage

on simulated VCF files of PopSimul. No data is shown for PopSimul_84/LB-Impute, as LB-Impute was not benchmarked due to excessive CPU time.

https://doi.org/10.1371/journal.pone.0314759.g003

Table 2. Comparison of estimated and expected map sizes for three different datasets using NOISYmputer, FSFHap and LB-Impute. The 84 VCFs generated using

PopSimul have varying numbers of markers (66,000, 100,000, 180,000 or 220,000), depending on the settings used to generate the VCFs. Overall, NOISYmputer is showing

considerably higher accuracy in map size estimation compared to FSFHap and LB-Impute. Estimated map size is given as average in the case of the 84 simulated

populations.

Dataset Software Estimated map size

(cM)

Expected map size

(cM)

Initial number of markers in VCF

F2 Maize GBS n = 91 samples including parents NOISYmputer 203

FSFhap 13,271 200 17,945

LB-Impute 633

F2 Rice WGS n = 222 samples including parents NOISYmputer 208

FSFhap 337,750 183 254,095

LB-Impute 23,436

84 PopSimul F2 populations n = 300 samples each

including parents

NOISYmputer 180

FSFhap 479,399 180 Different numbers of markers depending on the

simulation settings

LB-Impute N/A

https://doi.org/10.1371/journal.pone.0314759.t002
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(n = 222). This dataset includes 20 samples sequenced at *20X depth, and artificially sub-

setted to 3X (that we call pseudo-3X). These 20 samples allow for a more robust evaluation as

their breakpoints are well estimated thanks to their better depth. We processed similarly to the

simulated analyses and compared breakpoint precision, recall, and precision of breakpoint

position for NOISYmputer against the accurately estimated breakpoints at 20X coverage.

Unfortunately, we were not able to compare NOISYmputer results to those of FSFHap and

LB-impute as, even if we managed to retrieve each breakpoint position estimate, we could not

easily check which were actual breakpoints and which were false positives, as TASSEL FSFHap

and LB-impute do not provide support intervals for breakpoints.

Overall, NOISYmputer demonstrated excellent results with, on average, 99% precision and

97% recall. Regarding precision, on average the difference in position was of 10,219 bp, while

the median was of only 415 bp. The large difference between the average and the median is

due to a few breakpoints estimated far from their true position. Indeed, 80% of the breakpoints

were still estimated at less than 1,669 bp from their true position. In terms of number of SNPs,

the discrepancy was of 2 SNPs on average (median: 1) (S4 Table).

Overestimation of map sizes was mostly due to misinterpretation of noisy data by FSFHap

and LB-Impute. These discrepancies frequently arise in regions corresponding to structural

variations between parental genomes. Such variations can occur, for instance, when attempt-

ing to map onto regions found exclusively in the Parent A genome, which serves as the refer-

ence. In such cases, reads from B regions might map to the most similar A regions available

resulting in false recombination events according to imputation softwares. This phenomenon

is accentuated in WGS data compared to GBS data as the complete genome is sequenced and

mapped, thus increasing the number of markers. Including more sites, inducing sites belong-

ing to peculiar genomic structures, can hinder the quality of imputation if the software does

not take into account the coherence of a marker with its surrounding environment in the pop-

ulation. Though FSFHap and LB-impute might be precise in the estimated breakpoints posi-

tions, their lack of precision in breakpoints detection leads to results, on whole genome

datasets, difficult to use without the help of complex filtering steps. NOISYmputer, on the con-

trary, is very efficient at correcting mapping issues or divergence between parental genome

structures. Moreover, the filters applied by NOISYmputer allow keeping substantial amounts

of data, as shown in S5 Table. For instance, in the case of the Rice WGS dataset, nearly 150,000

SNPs are kept for chromosome 1, allowing the generation of an extremely saturated map.

A resource-optimized software, CPU- and RAM-efficient

In our comparative analysis of the NOISYmputer with established counterparts, we conducted

comprehensive benchmarks, focusing on execution time and RAM usage (Table 3 and Fig 3).

To do so, we ran NOISYmputer, FSFHap and LB-Impute on simulated and real datasets. We

then retrieved their CPU time, “wall clock” execution time and RAM usage using the seff com-

mand on the IFB computing cluster.

Concerning the F2 Maize GBS dataset, NOISYmputer ran *10 and *45 times faster than

FSFhap and LB-Impute, respectively. It also used less RAM (*3.4 GB), *3 times less than

FSFHap and *21 times less than LB-Impute.

Regarding the F2 Rice WGS dataset, NOISYmputer used slightly less RAM than FSFHap

and was *13 times faster (<6 min vs. 1h19m). LB-Impute showed poor CPU and RAM effi-

ciency as NOISYmputer used *9 times less RAM and ran*145 times faster.

Due to the excessive computation time on this single smaller dataset, LB-Impute was

excluded from the remaining comparisons with the 84 PopSimul VCFs with 300 samples. It is

interesting to note that FSFHap resource efficiency is better on simulated than on real datasets
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even though they have more samples. Indeed, FSFHap used on average 1.93 GB of RAM,

whereas NOISYmputer was stable at 3.61 GB. NOISYmputer was still faster than FSFHap on

average, with *5 min, while FSFHap ran in*9 min. This underlies the difficulty that FSFHap

has to impute noisy data, partly due to structural variants and calling errors. These results

underscore NOISYmputer’s efficiency improvement in processing imputation tasks, especially

compared to existing software for bi-parental population imputation.

Availability and future directions

Availability

NOISYmputer is available as a multiplatform (Linux, macOS, Windows) Java executable at the

URL https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_

type=tags. The source code and the documentation are available at the same URL. A Quarto

markdown companion (compatible with R markdown and Jupyter notebooks IDE) that allows

to display graphics of statistics (e.g., genotypic frequencies on SNPs and samples) and graphi-

cal genotypes from NOISYmputer output files was developed and is also available.

NOISYmputer and its companion are distributed under the GNU Affero General Public

License V3.0.

The 84 simulated VCFs that mimic the chromosome 1 of rice are available at https://

zenodo.org/records/13381283.

Future directions

NOISYmputer’s strengths. Although previous methods have made significant advances

in addressing the challenges listed above, the noisiness of imputed datasets are still producing

expanded genetic maps, excess heterozygosity, and probabilistically unlikely recombination

events contained within a short physical interval. Here, we introduce an algorithm which, in a

series of steps, addresses each source of error to create higher-quality datasets for improved

trait mapping and genomics-assisted breeding. Our algorithm represents a step to systemati-

cally address all sources of NGS genotyping error and even errors in the reference genome,

Table 3. CPU and RAM usage of NOISYmputer, FSFHap and LB-Impute for three datasets based on the output of the seff command on the IFB cluster. NOISYmpu-

ter 1st and 2nd Runs are displayed as NOISYmputer shows better CPU time usage for the second run since the conversion of the raw VCF file has already been done. For

LB-Impute, as imputation is processed in two steps, CPU time and execution time results are the sum of the two steps; RAM usage corresponds to the highest RAM usage

of the two steps (offspring imputation). For the 84 PopSimul VCFs section, results correspond to the average of resource usage for each of the 84 PopSimul VCFs for an

imputation half-window of 30 SNPs with NOISYmputer and the default window size (50) of FSFHap. All tests were conducted on the IFB Core cluster. *LB-Impute

showed excessive time/RAM use so it could not be evaluated.

Dataset Software CPU time (h:m:s) Total execution time (h:m:s) RAM (GB)

F2 Maize GBS n = 91 samples including parents NOISYmputer—1st run 00:00:27 00:00:28 1.00

NOISYmputer—2nd run 00:00:07 00:00:09 1.00

FSFhap 00:06:49 00:04:35 3.42

LB-Impute 600:20:59 00:21:04 21.61

F2 Rice WGS n = 222 samples including parents NOISYmputer—1st run 00:09:47 00:06:44 3.36

NOISYmputer—2nd run 00:06:49 00:04:35 3.42

FSFhap 01:19:00 01:19:06 4.02

LB-Impute 16:18:52 16:19:21 31.48

84 PopSimul F2 populations n = 300 samples each including parents NOISYmputer—1st run 00:05:18 00:05:39 3.61

FSFhap 00:09:20 00:09:24 1.93

LB-Impute* N/A N/A N/A

https://doi.org/10.1371/journal.pone.0314759.t003
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and hopefully the corrections brought here will be integrated into future algorithm develop-

ment. Indeed, key features of NOISYmputer are its pre- and post-filtering steps that other cur-

rently available software does not perform. In filtering SNPs and segments that are incoherent

with their environment and with the population local recombination landscape, NOISYmpu-

ter efficiently eliminates errors of genotype calling, sequencing errors, or errors generated by

structural variants. The pre-imputation and post-imputation stages of NOISYmputer, in par-

ticular, address artifacts of imputation caused by presence-absence variation misrepresented

by the reference assembly and assembly errors from inaccurate or misordered contigs. These

imputation artifacts, such as those caused by collapsed structural variants (incoherent sites or

false heterozygosity) or misassembled “chunks”, are not systematically addressed by other

imputation methods, such as LB-Impute [10], and otherwise must be parsed through manual

filtering of the imputed dataset.

NOISYmputer is a resource-effective software developed in Java, allowing its integration in

bioinformatics pipelines. NOISYmputer is parallelizing computation at the sample level in sev-

eral steps of the algorithm, which increases its speed considerably. The use of a Java standalone

executable also allows to simulate parallelization in running each chromosome on a separate

core of a server/cluster. Moreover, NOISYmputer employs a maximum likelihood method,

instead of hidden Markov models, which considerably reduces computational complexity,

compared to FSFHap [9] and LB-impute [10], while enhancing result accuracy and flexibility

across diverse datasets. Indeed, NOISYmputer is less sensitive to noisy regions (due to map-

ping artifacts for example) as it can handle large windows without being greedy in RAM and

computation time to overpass complex regions.

Notably, NOISYmputer’s speed allows iterative refinement of parameter settings. For exam-

ple, the size of the imputation window (in number of SNPs), like in other imputation programs

(e.g., FSFhap, LB-Impute), is arbitrarily fixed by the user. The most appropriate value for m

depends on several factors, including depth and SNP density. A convenient way to determine

which value for m to use is to run the imputation several times with different values until

reaching the expected distribution of the number of recombination breakpoints per sample

across the population (if previously known). Often, saturated genetic maps generated with

other types of markers are available in the literature, from which the expected distribution is

easily derived. With our rice data, the imputation algorithm gave the best results withm = 30,

so even a few runs should provide a satisfying window size.

Furthermore, NOISYmputer generates a .json file from the VCF during the initial run, that

is used by the consecutive runs, eliminating the redundant tasks of converting the input VCF

file, thus enhancing speed for subsequent launches on the same dataset.

Its robust performance extends to various VCF characteristics, accommodating differ-

ences in SNP quality, marker density, error rates, and sequencing depths. This is partly due

to its low sensitivity to the SNP calling step used to generate the input VCF, as NOISYmputer

is re-estimating the probabilities of genotypes using the allele depth at each site, along with

information of the surrounding environment and of the whole population. This results in

maintenance of overall excellent precision, recall and position precision on recombination

breakpoints even with very low coverage datasets (�1X). However, users should exercise

caution in selecting an appropriate imputation window size to mitigate the risk of false posi-

tives and negatives.

In addition to its performance benefits, NOISYmputer provides users with several compre-

hensive breakpoint confidence information allowing to further filter the identified break-

points. This is a feature that is innovative and useful and not available in other software, to our

knowledge. NOISYmputer also outputs statistics on genotypic/allelic frequencies, samples and

genetic map among others.
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Suggestions for improvement. NOISYmputer could benefit from several improvements.

The first one is including more population types. In the next version, we will implement F2

backcross, or BC1F1, the progeny of the F1 hybrid crossed with one of the parents (BC1); dou-

bled haploid of F1 gametes (DH); F2 intercross, that is, the progeny from F1 self-fertilization

(F2); recombinant inbred lines by single seed descent from the the BC1F1 (BCSSD); the uncon-

ventional mating design (UMD) BC1F3, derived by two generations of self-fertilization of

BC1F1 individuals. For now, it has been extensively tested and optimized for F2 crosses

between distant parents which might be one of the hardest designs to estimate breakpoints

from. We thus are confident that the algorithm can be adapted to these other types of crosses.

Breakpoint precision and recall could benefit from a more complex modeling of the likeli-

hood. Currently, we test for the existence of a single transition within the loose support interval

in imputation Step 3. Testing for one, two or even three transitions in a single interval could

increase the probability of finding close double recombination events if they happened to have

a higher probability in the tested region. Breakpoint position estimation, on the other hand,

might be improved by using a combination of NOISYmputer’s current algorithm with a hid-

den Markov model occurring in the Step 3 of imputation. This way, a smaller window size

could be applied and the region to scan would be reduced to a very limited percentage of the

genome only, resulting in a considerable gain of time.

NOISYmputer is robust on a broad range of samples and its computation time makes it very

convenient. Part of the success of NOISYmputer lies in the fact that it performs pre- and post-

imputation filtering steps that remove, among other things, incoherent SNPs, meaning SNPs that

do not segregate the same way as its immediate environment, often indicating mapping errors.

This filtering of incoherent SNPs step uses a Chi-square test to evaluate if the observed pattern is

reasonable. Unfortunately, Chi-square test thresholds are dependent on sample sizes. Thus, when

imputing many samples (e.g.,m = 2000) with NOISYmputer, the user has to adapt the Chi-square

threshold to the sample size, which is not convenient. A solution to this would be to use a “Cra-

mér’s V” statistic instead [13], which would be independent of the sample number in the VCF.

NOISYmputer estimates global error rates for A and B reads for a dataset. However, map-

ping and sequencing errors are highly variant-specific. So, it might be desirable to estimate A

and B reads error rates for each and every variant. This is what GBScleanR, for instance, imple-

ments for Genotyping-by-Sequencing data [14]. Nevertheless, in any case, NOISYmputer is

already very robust over a wide range of sequencing error rates, while mapping errors are fil-

tered before imputation.

Unlike FSFHap or LB-Impute, NOISYmputer does not impute the parental genotypes,

which might result in the loss of SNPs, especially in datasets derived from very low-coverage

sequencing. Although we recommend sequencing the parents at high coverage (� 20X), it is

not always possible—for instance, when re-analyzing historical data. The next version of NOI-

SYmputer will impute the parental genotypes when necessary.

Finally, as pointed in the Results section, the imputation half-window size can have an

impact on the outputs of NOISYmputer. NOISYmputer could benefit from an iterative process

that would check for different window sizes and analyze the convergence of the results to select

the appropriate window size and thus to achieve the best compromise between precision and

recall, along with precision of breakpoints positions.
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pared to their 20X counterparts. Pseudo 3X samples are derived from artificially subsetted

20X samples. These pseudo 3X samples were part of the 222 F2 Rice WGS samples imputed
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